3.214 \(\int (d \cos (a+b x))^{3/2} \sin ^4(a+b x) \, dx\)

Optimal. Leaf size=128 \[ \frac{8 d^2 \sqrt{\cos (a+b x)} F\left (\left .\frac{1}{2} (a+b x)\right |2\right )}{77 b \sqrt{d \cos (a+b x)}}-\frac{2 \sin ^3(a+b x) (d \cos (a+b x))^{5/2}}{11 b d}-\frac{12 \sin (a+b x) (d \cos (a+b x))^{5/2}}{77 b d}+\frac{8 d \sin (a+b x) \sqrt{d \cos (a+b x)}}{77 b} \]

[Out]

(8*d^2*Sqrt[Cos[a + b*x]]*EllipticF[(a + b*x)/2, 2])/(77*b*Sqrt[d*Cos[a + b*x]]) + (8*d*Sqrt[d*Cos[a + b*x]]*S
in[a + b*x])/(77*b) - (12*(d*Cos[a + b*x])^(5/2)*Sin[a + b*x])/(77*b*d) - (2*(d*Cos[a + b*x])^(5/2)*Sin[a + b*
x]^3)/(11*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.133133, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2568, 2635, 2642, 2641} \[ \frac{8 d^2 \sqrt{\cos (a+b x)} F\left (\left .\frac{1}{2} (a+b x)\right |2\right )}{77 b \sqrt{d \cos (a+b x)}}-\frac{2 \sin ^3(a+b x) (d \cos (a+b x))^{5/2}}{11 b d}-\frac{12 \sin (a+b x) (d \cos (a+b x))^{5/2}}{77 b d}+\frac{8 d \sin (a+b x) \sqrt{d \cos (a+b x)}}{77 b} \]

Antiderivative was successfully verified.

[In]

Int[(d*Cos[a + b*x])^(3/2)*Sin[a + b*x]^4,x]

[Out]

(8*d^2*Sqrt[Cos[a + b*x]]*EllipticF[(a + b*x)/2, 2])/(77*b*Sqrt[d*Cos[a + b*x]]) + (8*d*Sqrt[d*Cos[a + b*x]]*S
in[a + b*x])/(77*b) - (12*(d*Cos[a + b*x])^(5/2)*Sin[a + b*x])/(77*b*d) - (2*(d*Cos[a + b*x])^(5/2)*Sin[a + b*
x]^3)/(11*b*d)

Rule 2568

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(a*(b*Cos[e
+ f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1))/(b*f*(m + n)), x] + Dist[(a^2*(m - 1))/(m + n), Int[(b*Cos[e + f*x])
^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*
m, 2*n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (d \cos (a+b x))^{3/2} \sin ^4(a+b x) \, dx &=-\frac{2 (d \cos (a+b x))^{5/2} \sin ^3(a+b x)}{11 b d}+\frac{6}{11} \int (d \cos (a+b x))^{3/2} \sin ^2(a+b x) \, dx\\ &=-\frac{12 (d \cos (a+b x))^{5/2} \sin (a+b x)}{77 b d}-\frac{2 (d \cos (a+b x))^{5/2} \sin ^3(a+b x)}{11 b d}+\frac{12}{77} \int (d \cos (a+b x))^{3/2} \, dx\\ &=\frac{8 d \sqrt{d \cos (a+b x)} \sin (a+b x)}{77 b}-\frac{12 (d \cos (a+b x))^{5/2} \sin (a+b x)}{77 b d}-\frac{2 (d \cos (a+b x))^{5/2} \sin ^3(a+b x)}{11 b d}+\frac{1}{77} \left (4 d^2\right ) \int \frac{1}{\sqrt{d \cos (a+b x)}} \, dx\\ &=\frac{8 d \sqrt{d \cos (a+b x)} \sin (a+b x)}{77 b}-\frac{12 (d \cos (a+b x))^{5/2} \sin (a+b x)}{77 b d}-\frac{2 (d \cos (a+b x))^{5/2} \sin ^3(a+b x)}{11 b d}+\frac{\left (4 d^2 \sqrt{\cos (a+b x)}\right ) \int \frac{1}{\sqrt{\cos (a+b x)}} \, dx}{77 \sqrt{d \cos (a+b x)}}\\ &=\frac{8 d^2 \sqrt{\cos (a+b x)} F\left (\left .\frac{1}{2} (a+b x)\right |2\right )}{77 b \sqrt{d \cos (a+b x)}}+\frac{8 d \sqrt{d \cos (a+b x)} \sin (a+b x)}{77 b}-\frac{12 (d \cos (a+b x))^{5/2} \sin (a+b x)}{77 b d}-\frac{2 (d \cos (a+b x))^{5/2} \sin ^3(a+b x)}{11 b d}\\ \end{align*}

Mathematica [C]  time = 0.107953, size = 65, normalized size = 0.51 \[ \frac{\sin ^2(a+b x) \cos ^2(a+b x)^{3/4} \tan ^3(a+b x) (d \cos (a+b x))^{3/2} \, _2F_1\left (-\frac{1}{4},\frac{5}{2};\frac{7}{2};\sin ^2(a+b x)\right )}{5 b} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*Cos[a + b*x])^(3/2)*Sin[a + b*x]^4,x]

[Out]

((d*Cos[a + b*x])^(3/2)*(Cos[a + b*x]^2)^(3/4)*Hypergeometric2F1[-1/4, 5/2, 7/2, Sin[a + b*x]^2]*Sin[a + b*x]^
2*Tan[a + b*x]^3)/(5*b)

________________________________________________________________________________________

Maple [A]  time = 0.068, size = 255, normalized size = 2. \begin{align*} -{\frac{8\,{d}^{2}}{77\,b}\sqrt{d \left ( 2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}} \left ( 112\,\cos \left ( 1/2\,bx+a/2 \right ) \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{12}-280\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{10}\cos \left ( 1/2\,bx+a/2 \right ) +228\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{8}\cos \left ( 1/2\,bx+a/2 \right ) -62\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{6}\cos \left ( 1/2\,bx+a/2 \right ) +\sqrt{ \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) ,\sqrt{2} \right ) + \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2}\cos \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ){\frac{1}{\sqrt{-d \left ( 2\, \left ( \sin \left ( 1/2\,bx+a/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{2} \right ) }}} \left ( \sin \left ({\frac{bx}{2}}+{\frac{a}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{d \left ( 2\, \left ( \cos \left ( 1/2\,bx+a/2 \right ) \right ) ^{2}-1 \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*cos(b*x+a))^(3/2)*sin(b*x+a)^4,x)

[Out]

-8/77*(d*(2*cos(1/2*b*x+1/2*a)^2-1)*sin(1/2*b*x+1/2*a)^2)^(1/2)*d^2*(112*cos(1/2*b*x+1/2*a)*sin(1/2*b*x+1/2*a)
^12-280*sin(1/2*b*x+1/2*a)^10*cos(1/2*b*x+1/2*a)+228*sin(1/2*b*x+1/2*a)^8*cos(1/2*b*x+1/2*a)-62*sin(1/2*b*x+1/
2*a)^6*cos(1/2*b*x+1/2*a)+(sin(1/2*b*x+1/2*a)^2)^(1/2)*(2*sin(1/2*b*x+1/2*a)^2-1)^(1/2)*EllipticF(cos(1/2*b*x+
1/2*a),2^(1/2))+sin(1/2*b*x+1/2*a)^2*cos(1/2*b*x+1/2*a))/(-d*(2*sin(1/2*b*x+1/2*a)^4-sin(1/2*b*x+1/2*a)^2))^(1
/2)/sin(1/2*b*x+1/2*a)/(d*(2*cos(1/2*b*x+1/2*a)^2-1))^(1/2)/b

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cos \left (b x + a\right )\right )^{\frac{3}{2}} \sin \left (b x + a\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))^(3/2)*sin(b*x+a)^4,x, algorithm="maxima")

[Out]

integrate((d*cos(b*x + a))^(3/2)*sin(b*x + a)^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (d \cos \left (b x + a\right )^{5} - 2 \, d \cos \left (b x + a\right )^{3} + d \cos \left (b x + a\right )\right )} \sqrt{d \cos \left (b x + a\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))^(3/2)*sin(b*x+a)^4,x, algorithm="fricas")

[Out]

integral((d*cos(b*x + a)^5 - 2*d*cos(b*x + a)^3 + d*cos(b*x + a))*sqrt(d*cos(b*x + a)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))**(3/2)*sin(b*x+a)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (d \cos \left (b x + a\right )\right )^{\frac{3}{2}} \sin \left (b x + a\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*cos(b*x+a))^(3/2)*sin(b*x+a)^4,x, algorithm="giac")

[Out]

integrate((d*cos(b*x + a))^(3/2)*sin(b*x + a)^4, x)